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Synopsis 

Three apparently different quantum mechanical master equations, derived by 
Prigogine and Resibois, by Montroll, and independently by Nakajima and 
Zwanzig, are shown to be identical. The derivation by Zwanzig, based on projec- 
tion operator and Liouville operator techniques, is repeated in greater detail than in 
previous articles. The results of Prigogine and Resibois, and of Montroll, are 
found by making changes in notation. 

Introduction. Considerable attention has been given in recent years to 
the rigorous derivation of quantum mechanical master equations, valid to 
all orders in a perturbation. This article contains a demonstration of the 
identity of three apparently different results. 

Four exact master equations have been found (to the best of my know- 
ledge). In chronological order, they are as follows : 

The first was obtained by Van Hove 1) in 1957. Although his derivation 
was based on the limit of an infinite system, and in particular, on his diago- 
nal singularity condition, the same equation has been obtained by S wen- 
son 2) without making any assumptions at all about the nature of the 
system. This equation is referred to as VHS in the following. 

The second master equation was obtained by N a ka j ima a) in 1958, and 
independently and in greater detail by myself 4) 5) in 1960. Both derivations 
used projection operator and Liouville operator methods. The resulting 
master equation is referred to here as NZ. 

The third master equation was derived by Re si bois 6) in 1961. His 
method of derivation was modified in a subsequent article by Prigogine 
and Re s i b o i s 7)) also in 196 1. The final result is given explicitly in a 1963 
article by RC sibois s), where he refers to it as a master equation derived 
by Prigogine and Resibois; so we refer to it as PR. 

The fourth master equation was derived by M ontroll a) in 196 1. An 
earlier article la) in 1960 gave the derivation to lowest order in the pertur- 
bation, and suggested the general approach. 

In a recent article s) Resibois discussed the relation between VHS and 
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PR. He concluded that both equations were exact, and that they both 
could be used to calculate the same quantities, but that they were not iden- 
tical. RCsiboi s did not mention, however, the other master equations NZ 
and M. 

The main purpose of the present article is to show that PR and M, while 
apparently different in structure from NZ, are actually identical with NZ 
aside from differences in notation. Specifically, M is obtained from NZ by 
using determinants and minors to calculate (formally) the inverse of a 
certain tetradic operator. Also, PR is obtained from NZ by replacing matrix 
subscripts (m, N) by their difference and their arithmetic mean. Thus, the 
results of this article, taken together with those of ref. 8, can be summarized 
in the equation NZ = PR = M # VHS. 

A secondary purpose of the present article is to call attention once more 
to the methods used to derive NZ, and to go into greater detail concerning 
the derivation than seemed desirable in my previous articles. These methods 
were devised in the first place to be fast and economical, so that one would 
not have to go through complicated and tedious arguments of the sort 
found in refs. 6 and 7. While concise and direct, these methods involve a 
certain amount of unfamiliar and abstract operator technique. It is hoped 
that the following detailed exposition will serve to make them more ac- 
cessible and easily used. 

Liotiville operators and volz Neumann’s equation. The master equations 
with which we are concerned are kinetic equations for the diagonal elements 
of a density matrix. The density operator is i;; its matrix elements in some 
particular representation are /3mn. 

The time dependence of the density matrix pmn(t) is determined by von 
Neumann’s equation. In operator form, this is (with F, = 1) 

where fz is the Hamiltonian operator. In the chosen representation, von 
Neumann’s equation is 

+mn 
---~ 

at 
--i +J (Hml pin - pm1 ffln). 

We wish to extract from this an equation, determining the time dependence 
of the diagonal elements of Q, which does not contain the nondiagonal ele- 
ments of 8. 

We solve von Neumann’s equation by means of Liouville operators. These 
operators are defined as follows. Given an arbitrary operator A, another 
operator e can be constructed by the rule 

C = @a - AA). (3) 
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In Heisenberg quantum mechanics this is tantamount to turning an opera- 

tor into its time derivative, The operation of going from A^ to C? will be 
denoted by L, and L will be called the Liouville operator, 

C=LA. (4) 

It is clearly a linear operation. In the chosen representation it turns a 

matrix with two subscripts into another matrix with two subscripts; there- 
fore, it can be represented by a tetradic with four subscripts, 

(5) 

Because of the definition of L as the commutator with &, the explicit 

form of the tetradic L is 

L mnmtn’ = Hmml I&,/ - d,,* H,p,. 

The multiplication rule for tetradics 

(6) 

(L1L2)mnmw = x r, (Ll)mnab (‘52)ainnW (7) 
a b 

can be found by evaluating repeated commutators. The identity tetradic 
is evidently 

(1) mnm’n’ = drnrn’ Snn’. (8) 

Tetradics behave very much like ordinary matrices. In fact, their algebra 

can be reduced to that of matrices by the following trick. In representing 
an operator by a matrix, we may pick some arbitrary way of ordering pairs 
of subscripts, so that the pair (m, n) is denoted by a single integral sub- 
script (CC). In this way the matrix Am, is replaced by the linear array or 

vector A,,,. Equation (5) can now be written as 

We see that the tetradic L has been replaced by a matrix with two sub- 
scripts. 

This means that the algebra of tetradics is isomorphic to the algebra 
of matrices. For finite tetradics, e.g. for interacting spin systems, the iso- 

morphism is perfect. For infinite tetradics, convergence difficulties can 

arise as a result of the completely arbitrary ordering of subscript pairs. On 
this account we assume, as is customary in theoretical physics, that all 
infinite series converge unless there is good reason to believe otherwise; 
and we do not go into this question further. 

We show later that the representation used by RCsibois 6) has an es- 
pecially attractive property: the tetradic L is diagonal in a pair of bsu- 



scripts. Because of this circumstance, he is able to use more conventional 
methods involving matrices with two subscripts. 

In the Liouville operator notation, von Neumann’s equation is 

(10) 

It has the formal solution, as an initial value problem, 

p(t) = e-QL p(O). (11) 

The tetradic operator exp(--itl) is just as well defined as the more familiar 
exp(-z&). It can be calculated by expansion of the exponential function, 
followed by use of tetradic multiplication to get the powers of L. The useful 
identity 

(,-ZtL) mnmpnr = (e-itA)mmj (eitri)nnT 
(12) 

can be verified by differentiation with respect to time, and application of 
eq. (6). On applying this identity to eq. (11) we get the familiar Heisenberg 
solution 

F(t) = e --itEi i;(O) eit8. 
(13) 

The Liouville operator solution has two advantages over the usual Hei- 
senberg operator solution. One advantage is the extra compactness in 
performing perturbation expansions. We divide the Hamiltonian A into an 

unperturbed part l?e and a perturbation AI., 

A = Ae + Ai. 

The perturbation expansion of exp(-&) is well known, 

(14) 

-it8 = e-itBo _ 
t ” ^ ” 

e i/dtl e -i(t-tl)Ho HI e -i&Ho 
+ 

0 

+ (_,“;d,/& e-i(t-t’)8, fjl e-i(tl-ta)&o fjl e-itr&n 
(15) 

0 

+...... 

When this is applied to eq. (13), the perturbation appears on both sides 
of i;(O). To collect terms of the rt-th order in the perturbation, one must 
combine contributions of various orders from the two sides. 

But we may divide L into an unperturbed part Lo and a perturbation 

Ll, 
L = LrJ + L1. (16) 

The perturbation expansion of exp(--itL) has exactly the same structure as 
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that of exp(-iit&‘), 

t 
e --itL = e-itLo _ if& e-i(t-h)LO L1-itlLo + 

0 

+ (_szdh,11&2 e-i(t-tdLo L1 e-i(tl-ta)Lo ~~ e--itaLo + (17) 

+.... 

When this expansion is applied to eq. (13), the perturbation always appears 
on the left of B(O), and it is not necessary to collect and combine contri- 

butions from two sides. 
But the real advantage of the Liouville operator solution lies in the ye- 

solvent form of solution. Let us solve von Neumann’s equation by means 
of Laplace transforms. The transform of the density operator j? is denoted 

bY $(P)P 
co 

$(p) = f dt e--pt i;(t). (18) 
0 

On transforming eq. (lo), we get 

m4 - BP) = - iL k(P). (19) 
The formal operator solution is 

.!!(P) = l * + iL B(O). (20) 

This is very much simpler than the Laplace transform solution using Ha- 

miltonians. If we define the resolvent of the Hamiltonian by 

then the solution k(P) is given by 

g(e) = & j dz R(z - i@) B(O) R(z). 

(21) 

(22) 

The contour of integration in the z plane encloses that part of the real axis 
occupied by the exact eigenvalues of I?. 

Equation (22) is equivalent to the starting point of Van Hove’s derivation; 
the only difference is the trivial one that we have taken the Laplace trans- 
form where he took the Fourier transform. 

Sefiaration into relevant and irrelevant parts. The derivation given in 
refs. (3), (4), and (5) was based on the separation of the density operator 
into relevant and irrelevant parts by means of a projection operator. The 
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relevant part is clearly the diagonal part of 8; and the irrelevant part is 
the nondiagonal part of $3. 

To select the diagonal part, we use the projection operator D. In tetradic 
form, D is 

(Di;) mn = Pmm 6 mn, 

D = dmn 6mmJ dnn*. 
(23) 

mnm’n’ 

It is easy to verify that this has the desired property, and that it obeys 
the fundamental requirement of a projection, D2 = D. The irrelevant or 
nondiagonal part is selected by the projection operator 1 -D. 

Thus the density operator separates into the diagonal part $1 and the 
nondiagonal part $2, 

ii = 61 + $2, 

,& = Dp^, Q2 = (1 - D)& (24) 

In just the same way, the Laplace transform g(e) separates into diagonal 
and nondiagonal parts, 

5%)) = Sl(P) + .&(P)J 

21(P) = D&9), dz(fi) = (1 -D) 0). (25) 

Next, we use D and 1 -D to separate von Neumann’s equation into two 
parts, 

or 

DP$@) - Di;(O) = --iDL g(P), 

(1 -D) Pi($) - (1 -D) B(O) = --i(l -D) J%(P), (26) 

$&(#) - $1(O) = --iDL &(fi) - iDQ$(P), 

J~$z($) - j;2(0) = --i(l -D)L!l($) - i(l --D)Q!z($). 

We solve the second equation for g&5), 

[P + i(l -Wl$&d = jb(O) - i(l--D)L &($I; 

(27) 

$2(P) = p + i(:-D)L 82(o) - p + i(:--D)L i( 

and we put the solution back into the first equation, 

P&(P) - h(O) = --iDL $1(p) - iDL p + ic: _D)L i 

--D)L $1(p) ; (28) 

$2(O) - 

1 
-DL p + ;(* _D)L (1 -D)L 65(S). (29) 

The result of the preceding derivation is the Laplace transforms of our 
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generalized master equation. Let us invert the transform, using the well 

known theorem that the inverse of a product is a convolution. The result is 

G-1 (4 ~- = _ 
dt 

iDL $1(t) - iDL e--i(l--D)Lf j&(O) _ 

- /tdtl DL e--i’l(l-D)L(l -D)L pl(t-tl). (30) 
0 

In most applications of the master equation, the density operator is diagonal 
initially, or 

i;s(O) = 0. (31) 

This initial condition is commonly referred to as the assumption of initial 

random phases. When it applies, eq. (30) makes no reference to the non- 
diagonal elements of i;. Thus the master equation has the desired property 
of containing only the diagonal elements of 8. 

When a more general initial condition applies, then all of eq. (30) must 
be used. Even so, the nondiagonal elements enter only through the initial 
value i;s(O). This structure is characteristic of the other master equations, 
M, PR, and VHS. 

If the time dependence of the nondiagonal elements is also of interest, 
one needs the Laplace inversion of eq. (28). Th,s connects j&(t) to PI(t). 

For the rest of this article we discuss only the diagonal elements, and 
use only the initial condition &J(O) = 0. 

Ea+licit form of the master equation. Equation (30) is expressed in an 
abstract operator notation. Here we change to the more explicit subscript 
notation. We use the Liouville operator given in eq. (6), and the projection 
operator given in eq. (23). 

At this point we require that the representation be chosen so that the 
unperturbed energy is diagonal. (This is true of the other master equations 

too). The unperturbed energy eigenvalues will be denoted by En, so that 

(Ho)nzn = E, &,. (32) 

Then the unperturbed Liouville operator is 

(Lo)mnm~n~ = (G--En) &rns &,I. (33) 

It is a trivial calculation to verify that 

DLo = LoD = 0. (34) 

Also, the product DLD vanishes for any Hamiltonian. This is seen from 
the definitions, which lead to 

(DLD) mnm’n = drnn Lmmmfmf 6rn’n’. (35) 
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But because of eq. (6), L mm1212 vanishes. Therefore we have 

DLD = 0. (36) 

Equation (36) serves to eliminate the first term on the right of eq. (30). 
The reason is 

DL ,& = DLD i;. (37) 

The rest of eq. (30), without the initial value 62(O), has the explicit form 

t 
di;mm (t) 

- - 
dt s 

dtl [K(h) jh(t - tl)lmm. (38) 

0 

We have abbreviated 

K(t) = DL e- it(l--D)L (1 __D)L. 

Because $1 is diagonal, eq. (38) is 

(39) 

dh4 = _ 
dt s mmnn(t1) pnn(t--1). (40) 

11 

0 

As a result of the identities in eq. (34), the memory kernel Kmmnn(t) can be 
simplified slightly to 

K mmnn(t) = [Ll e -it(l-D)L(l -D)Lllmmnn. (41) 

Note that this is formally of the second order in the perturbation; it con- 
tains two explicit factors L1. Higher order dependence on the perturbation 
comes from the exponential operator in K. 

Next we prove the sum rule 

C Kmmnn(t) = 0. (42) 
12 

The demonstration starts with 

C Km,,, = C Z: C [Lr e--it(l--D)L(l -D)]m7nab (L&ban = 
n 1~ a b 

= {C X [LI e--i’(l-D)L( 1 -D)&m} x IX (L&m. (43) 

a b 12 

But according to the definition of the Liouville operator, 

c (L1)abnn = z (Hl) an dbn - c dam (Hl)nb (44) 
12 n n 

which proves our assertion . 
The sum rule can be used as follows, 

C K,,,, = --K,,, (45) 
V%#Wl 



ON THE IDENTITY OF THREE GENERALIZED MASTER EQUATIONS 1117 

so that our master equation takes the familiar gain-loss form 

t 

dpmm (t) 
- - 

dt s 
dtl IX Kmmnn(tl) [pnn(t - tl) - Pmm(t - tl)] 

n#m 
0 

(46) 

with the kernel K given explicitly by eq. (41). 

Montroll’s master equation. We demonstrate here the identity of the 

generalized master equation derived by Mont roll 9) and our own master 
equation. 

Several changes in notation are required to conform with Montroll’s 

work. We replace tl by T, m and n by j and k, and I?r by AU. 
Montroll’s equation has the general structure of eq. (46). To prove the 

identity of the two equations, we must obtain his memory kernel from 

ours. We start with the definition of K, 

&m(7) = [Lie -iT(l-D)L (1 -D)L&,kk. (47) 

By tetradic multiplication this is 

= C IZ C IX (L&jab [e-i’(‘-D)Ll~bed (L&W. 
a b c d 

(48) 

Note that the terminal (1 --D) in eq. (47) is redundant, because Lcckk al- 
ways vanishes. For convenience we abbreviate 

e -WI--DK = CZJ(+ 

On using the definition of the tetradic L, we obtain 

(49) 

Kjjkk(T) = A2 x x z x Uba Ucd gab&) x 
a b c d 

x (dbj - &j) (ddk - ‘%k). (50) 

Montroll’s calculation is equivalent to evaluating the elements of the 
tetradic G by means of Laplace transforms. Let us define 

m 
g($) = / dt e-Pt S(t). 

0 
(51) 

By direct integration this is also 

Jw = 
1 

p + i(l--D)L . 
(52) 

We observed earlier in this article that tetradics can be manipulated as 
if they were matrices, by the device of associating subscript pairs with 
single integers. Thus the inverse tetradic g(9) may be calculated in terms 
of the determinant and minors of the tetradic in the denominator, 

M = fi + i(l--D)L (53) 
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or 

Mabed = p dac dbd dab + i aab sac 8bd + 

+ i( 1 -dab) (nuac dbd - 1 dac Udb}. (54) 

(In writing eq. (54) we used the abbreviation Ea-Eb = wab). The deter- 
minant of M is D(f). The minor associated with the [(ab), (cd)] element of 
M is D(ab/cd; p). Thus the inverse is 

~abccZ(p) = g(ab/Cd; 9) = 
q@w; p) 

D(P) * 

These quantities are all identical with those introduced by Montroll, and 

we have used his notation. 
Next, we use the operator identity 

1 1 1 

p+i( 1 --D)L - p+q 1 --D)Llj - p+i( 1 --D)Lo it* --D)L1 p+q 1 --D)L 

(56) 

Equation (52) introduces 9, and eq. (34) eliminates the quantity DLo. 

In this way we obtain 

WP) = p +*x0 - p +Lo i( 1 --D)L1.qP). 

The unperturbed resolvent, in subscript notation, is 

(9 i&)abcd = p +li(nab dacBbd’ 

so that 

~abed(p) = 
1 

$ -i- iccJab 
dac dbd - 

i L 
- p + i. (1 -dab) x {uam ~?nbcd(p) - U?nb ~amcd@)). 

a 
b 

m 

The inverse Laplace transform of eq. (59) is 

gabed = e-iw@ar 6a, 8bd - 
C+ioO 

- & dp ep7 
s 

1 --dab 
p + icoab 5 {~arn~nzbcd(p) - ~nzb~anzcd(l+))~ 

C-i- 

(57) 

(58) 

(59) 

(60) 

When this is substituted in eq. (50) to give the kernel Kfjke(~), and the 
kernel is put into eq. (46), we obtain Montroll’s form of the master equation. 
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Prigogine and Rhsibois’ master eqzcation. We demonstrate here the iden- 
tity of the generalized master equation derived by Prigogine and RC- 
sibois and our own master equation. 

They use a second-quantized Hamiltonian, in the occupation number 
representation. This is quite unnecessary, however, and their results are 
(in a formal sense) considerably more general. 

The states of the unperturbed Hamiltonian Aa are labelled by the quan- 
tum number n. (In the occupation number representation, these are the 
numbers of elementary excitations in each unperturbed state). We do not 
have to give any physical interpretation to these quantum numbers. The 
matrix elements of the unperturbed Hamiltonian are 

@_dnn, = En ban,, (61) 

and the perturbation Ai = ;IV has matrix elements V,,,. 
RCsibois uses a special notation for matrix elements. For an arbitrary 

operator A, let 

A nltt = A.+ (n;n’), (62) 

and use the abbreviations 

v=n-n’; N= n;n’_ 

Thus the average of A^ is 

<A> = C Z Ann, pnrn = 
12 n’ 

= I3 C A4V P-Y(N). 
v N 

When A is diagonal in the unperturbed representation, we have 

A nn’ = Ann ban* ; 

-4(N) = Ao(N) bo; 

(63) 

(64) 

(65) 
so that the average of A is 

<A> = X Ao(N) PO(N). 
N 

(66) 

Thus our master equation is concerned with the N and t dependence of the 
particular matrix elements po(N, t). 

The Liouville operator is expressed in this notation as follows. We start 
with 

L mnm’nl = Hrnrnr 6nn’ - drnrn* &pa (67) 
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and use the substitutions 

m&V+:, n=N-z 
2 2’ 

I I 
&=N’++, &N’--&. 

Then the Liouville operator is 

L,,,(N, N’) = IJ_-y~(N + iv’) 6 
v’ - v 

N’ - N - 2 
> 

- 

VI - v 
- H,_,,(N - iv’) 6 N’ - N + 2 

> 

(68) 

(69) 

Following Resibois, we introduce the shift operator vi” which replaces a 

function of N by the same function of N f iv, 

r*” f(N) = f(N f 4~). (70) 

Then the Liouville operator is 

L,,,(N, N’) = q”’ Hy_,,,(N) q-” 6(N - N’) - 

- q-” H,+*(N) 7” d(N - N’). (71) 

On introducing Resibois’ matrix element (still an operator with respect to 

N), 

<vIZ(N)Iv’> = 7”’ H,,+(N) q-” - q-“’ H+(N) q”, (72) 

we obtain 

L,,,(N, N’) = <Y/X(N)[V’> 6(N - N’). (73) 

This representation has the remarkable property of being “diagonal” in N, 
for the perturbed system as well as the unperturbed one. 

The diagonality referred to here is exactly the same as one sees in the 
coordinate representation of matrix mechanics. For example, the matrix 
of the momentum operator in the coordinate representation is 

p(r - r’) = - U, 6(r - r’). (74) 

This matrix is “diagonal” in the sense that it contains the delta function 

in positions. As is well known, one can drop the delta function and the 
matrix notation, and deal exclusively with Schrodinger operators. RCsibois 
does this with respect to the quantum numbers N. Therefore, his operator 
X(N) is just another way of writing the Liouville operator L ; and his ma- 
trix-operator (vJX(N)lv’> is a matrix with respect to one set of quantum 

numbers and an operator with respect to the other. 



In this notation, von Neumann’s equation becomes 

apv(N, 4 
at 

= x 2 L,r(N, N') pv(N’, t) = 
Y’ N’ 

= + <$@‘(N)~Y’> pv(N, 4. (75) 

For the moment we keep the full tetradic notation. 
The projection operator defined by eq. (23), when rewritten by means 

of the substitutions in eq. (68), becomes 

&(N, N’) = d(y) B(Y’) 6(N - N’). (76) 

Note that the projection operator also is diagonal in N. 
Now we are ready to go from eq. (38) to the PR master equation. In 

present notation, eq. (38) is 
t 

+o(N> 4 = - 
dt s dtl x Koo (N, N’; tl) po(N’, t - h), (77) 

N' 
0 

and the kernel is 

Kee(N, N’; t) = [Ll e-it(l-D)L (1 --D) Li]oo,NN,. (78) 

For simplicity of notation we have written the (N, N’) dependence as 

subscripts. 
Each tetradic in the kernel contains a delta function in N; see eqs. (73) 

and (76). Now we drop these delta functions and deal exclusively with 

o$erators in N space. The tetradic L,,g(N, N) is replaced by the matrix- 

operator <Y]%(N) IV’), and the projection operator tetradic &(N, N’) is 
replaced by the matrix 

<%@lY’) = B(V) 8(Y’). (79) 

The operator corresponding to the matrix Kea(N, N’ ; t) will be denoted 
by -G(N, t). Evidently its explicit formula is 

-G(N, t) = <O\ XI e -it(1-9)x (1-9)Sr IO), (80) 

where <O] - IO> means the matrix element between Y = 0 and Y = 0. The 
N dependence of S? was left implicit to save space. 

In this operator notation, eq. (77) is 

t 
dpo(N, t) 

= 
dt s dtl G(N, h) po(N, t - h). 

0 

631) 

This has precisely the form of PR. All that remains is to show the identity 
of G, as defined in eq. (80), with the quantity Gee defined by Resibois. 
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By means of residue theory, we may express G in terms of a new quantity 

Y(Z)1 

G(N, t) = -& dz e-itz y(Z) (82) 

where ~(2) must have the value 

(83) 

The Hamiltonian is separated into two parts, the unperturbed fia and the 
perturbation Z?r = IV’; the Liouville operator S is separated in just the 
same way into 2’0 and ~?‘r = AY, 

ri = Aa + AV, 

Now we make the familiar power series expansion 

1 1 1 

Z-(1 -qA? = z-(l-q.%~ 
+ 

z-(1-9)iPo 
(1 -qw * 

1 1 

z-(l-qie~ 
+ 

2--(1-q3fo 
(1-qnv 1 

z-(l-sqx~ 
(I-qw- * 

1 

2-(1-zq~0 
+ . . . . (85) 

Because DLo vanishes, as in eq. (34), it is obvious that 920 also vanishes 
and that 

2 -(1 - 9)Sa = 2 - X0. 

Then the expansion of y(Z) is 

(86) 

Y(4 = - (0 I?+,- I { ,f, + ., (1-B) w- 
1 

0 0 z--0 + 

+ zyxo (1-qnv- ., (1-LiB)Iv- * 
0 Z-S%?0 

(1-qnr 0). 

’ (87) 

The projection operators 1 - 9 contained in each term have the effect 
that in calculating matrix products, no intermediate states with v = 0 may 
occur. This is the same as the irreducibility criterion of Resibois. We drop 
the 1 - 9 and instead put a subscript v # 0 on the matrix elements, 

Y(Z) = - (+yI-&K + z_&. AV z_lso +...}+)“#o. (88) 
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But this is precisely the formula given by RCsibois 8) for his operator 
y&((z). We conclude that our G(N, t) is identical with his G&V, t). Thus 
the master equations PR and NZ are identical. 
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